자료유형 | E-Book |
---|---|
개인저자 | Bose, Koushiki. |
단체저자명 | Princeton University. Operations Research and Financial Engineering. |
서명/저자사항 | Robust Dependence-adjusted Methods for High Dimensional Data. |
발행사항 | [S.l.] : Princeton University., 2018 |
발행사항 | Ann Arbor : ProQuest Dissertations & Theses, 2018 |
형태사항 | 216 p. |
소장본 주기 | School code: 0181. |
ISBN | 9780438047945 |
일반주기 |
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Adviser: Jianqing Fan. |
요약 | The focus of this dissertation is the development, implementation and verification of robust methods for high dimensional heavy-tailed data, with an emphasis on underlying dependence-adjustment through factor models. |
요약 | First, we prove a nonasymptotic version of the Bahadur representation for a Huber loss M-estimator in the presence of heavy-tailed errors. Consequently, we prove a number of important normal approximation results, including the Berry-Esseen boun |
일반주제명 | Statistics. |
언어 | 영어 |
기본자료 저록 | Dissertation Abstracts International79-10B(E). Dissertation Abstract International |
대출바로가기 | http://www.riss.kr/pdu/ddodLink.do?id=T14998189 |
인쇄
No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 |
---|---|---|---|---|---|---|---|---|
1 | WE00027606 | 310 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출가능 |