 
				
				
			| 자료유형 | E-Book | 
|---|---|
| 개인저자 | Bose, Koushiki. | 
| 단체저자명 | Princeton University. Operations Research and Financial Engineering. | 
| 서명/저자사항 | Robust Dependence-adjusted Methods for High Dimensional Data. | 
| 발행사항 | [S.l.] : Princeton University., 2018 | 
| 발행사항 | Ann Arbor : ProQuest Dissertations & Theses, 2018 | 
| 형태사항 | 216 p. | 
| 소장본 주기 | School code: 0181. | 
| ISBN | 9780438047945 | 
| 일반주기 | Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B. Adviser: Jianqing Fan. | 
| 요약 | The focus of this dissertation is the development, implementation and verification of robust methods for high dimensional heavy-tailed data, with an emphasis on underlying dependence-adjustment through factor models. | 
| 요약 | First, we prove a nonasymptotic version of the Bahadur representation for a Huber loss M-estimator in the presence of heavy-tailed errors. Consequently, we prove a number of important normal approximation results, including the Berry-Esseen boun | 
| 일반주제명 | Statistics. | 
| 언어 | 영어 | 
| 기본자료 저록 | Dissertation Abstracts International79-10B(E). Dissertation Abstract International | 
| 대출바로가기 | http://www.riss.kr/pdu/ddodLink.do?id=T14998189 | 
				
				
				
				
				
				
				 인쇄
 인쇄
				
				
			
| No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 | 
|---|---|---|---|---|---|---|---|---|
| 1 | WE00027606 | DP 310 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출불가(별치) |   |