가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Clinical Information Extraction from Unstructured Free-Texts

상세 프로파일

상세정보
자료유형E-Book
개인저자Tao, Mingzhe.
단체저자명State University of New York at Albany. Information Science.
서명/저자사항Clinical Information Extraction from Unstructured Free-Texts.
발행사항[S.l.] : State University of New York at Albany., 2018
발행사항Ann Arbor : ProQuest Dissertations & Theses, 2018
형태사항142 p.
소장본 주기School code: 0668.
ISBN9780438255500
일반주기 Source: Dissertation Abstracts International, Volume: 79-12(E), Section: A.
Advisers: Ozlem Uzuner
요약Information extraction (IE) is a fundamental component of natural language processing (NLP) that provides a deeper understanding of the texts. In the clinical domain, documents prepared by medical experts (e.g., discharge summaries, drug labels,
요약In the past decade, there have been many efforts focused on extraction of clinical information, i.e., clinical IE. In this dissertation, we present novel extensions to IE methods for automatically identifying clinically-relevant information from
요약(1) Knowledge representations that utilize real-valued word embeddings outperform their categorical counterparts. Categorical embeddings eliminate word-to-word distances in the high-dimensional space when converting words into discrete labels. R
요약(2) Introducing pseudo-sequences from unannotated data can improve extraction of entity categories that are sparsely represented in the training data. We use a supervised model trained on annotated data to predict pseudo-sequences from unannotat
요약(3) We can address lack of available annotated data through pseudo-data generation. We experiment with three different methods of pseudo-data generation. The first method is based on professional gazetteers. It replaces entities in the annotated
요약(4) Sequence labeling approach to relation extraction can benefit this task. Sequence labeling can identify textual excerpts that contain entities and enables subsequent extraction of sequences of related entities from these excerpts.
요약Cross-validated results across multiple clinical IE tasks show overall significant performance improvement from the knowledge representations, pseudo-sequences, pseudo-data, and relation extraction models we proposed in our study. The generalize
일반주제명Information science.
Computer science.
Bioinformatics.
언어영어
기본자료 저록Dissertation Abstracts International79-12A(E).
Dissertation Abstract International
대출바로가기http://www.riss.kr/pdu/ddodLink.do?id=T14999857

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00024592 DP 020 가야대학교/전자책서버(컴퓨터서버)/ 대출불가(별치) 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.