자료유형 | E-Book |
---|---|
개인저자 | Thoma, Steffen, author. |
서명/저자사항 | Multi-modal data fusion based on embeddings /Steffen Thomas, FZI Forschungszentrum Informatik, Karslruhe, Germany.[electronic resource] |
발행사항 | Amsterdam : IOS Press, [2019] |
형태사항 | 1 online resource. |
총서사항 | Studies on the Semantic Web ;volume 041 |
소장본 주기 | Master record variable field(s) change: 082 |
ISBN | 9781643680293 1643680293 |
서지주기 | Includes bibliographical references. |
내용주기 | Intro; Title Page; Introduction; Motivation; Challenges; Hypotheses and Research Questions; Contributions; Outline; Foundations; Semantic Web; Representation Learning; Data Fusion; Introduction; Motivating Example; Related Work; Pipeline; Experiments; Summary; Multi-modal Fusion and Transfer; Introduction; Motivating Example; Related Work; Multi-modal Fusion; Experiments on Multi-modal Fusion; Multi-modal Transfer; Experiments on Multi-modal Transfer; Summary; Conclusion; Summary; Future Work; Bibliography; Appendix; Full Michael Jordan Example; Evaluation Tables; Evaluation Heatmaps |
요약 | Many web pages include structured data in the form of semantic markup, which can be transferred to the Resource Description Framework (RDF) or provide an interface to retrieve RDF data directly. This RDF data enables machines to automatically process and use the data. When applications need data from more than one source the data has to be integrated, and the automation of this can be challenging. Usually, vocabularies are used to concisely describe the data, but because of the decentralized nature of the web, multiple data sources can provide similar information with different vocabularies, making integration more difficult. This book, Multi-modal Data Fusion based on Embeddings, describes how similar statements about entities can be identified across sources, independent of the vocabulary and data modeling choices. Previous approaches have relied on clean and extensively modeled ontologies for the alignment of statements, but the often noisy data in a web context does not necessarily adhere to these prerequisites. In this book, the use of RDF label information of entities is proposed to tackle this problem. In combination with embeddings, the use of label information allows for a better integration of noisy data, something that has been empirically confirmed by experiment. The book presents two main scientific contributions: the vocabulary and modeling agnostic fusion approach on the purely textual label information, and the combination of three different modalities into one multi-modal embedding space for a more human-like notion of similarity. The book will be of interest to all those faced with the problem of processing data from multiple web-based sources. |
일반주제명 | RDF (Document markup language) Semantic Web. |
언어 | 영어 |
대출바로가기 | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2294660 |
인쇄
No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 |
---|---|---|---|---|---|---|---|---|
1 | WE00020094 | 025.042/7 006 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출가능 |