가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Multi-modal data fusion based on embeddings / [electronic resource]

상세 프로파일

상세정보
자료유형E-Book
개인저자Thoma, Steffen, author.
서명/저자사항Multi-modal data fusion based on embeddings /Steffen Thomas, FZI Forschungszentrum Informatik, Karslruhe, Germany.[electronic resource]
발행사항Amsterdam : IOS Press, [2019]
형태사항1 online resource.
총서사항Studies on the Semantic Web ;volume 041
소장본 주기Master record variable field(s) change: 082
ISBN9781643680293
1643680293

서지주기Includes bibliographical references.
내용주기Intro; Title Page; Introduction; Motivation; Challenges; Hypotheses and Research Questions; Contributions; Outline; Foundations; Semantic Web; Representation Learning; Data Fusion; Introduction; Motivating Example; Related Work; Pipeline; Experiments; Summary; Multi-modal Fusion and Transfer; Introduction; Motivating Example; Related Work; Multi-modal Fusion; Experiments on Multi-modal Fusion; Multi-modal Transfer; Experiments on Multi-modal Transfer; Summary; Conclusion; Summary; Future Work; Bibliography; Appendix; Full Michael Jordan Example; Evaluation Tables; Evaluation Heatmaps
요약Many web pages include structured data in the form of semantic markup, which can be transferred to the Resource Description Framework (RDF) or provide an interface to retrieve RDF data directly. This RDF data enables machines to automatically process and use the data. When applications need data from more than one source the data has to be integrated, and the automation of this can be challenging. Usually, vocabularies are used to concisely describe the data, but because of the decentralized nature of the web, multiple data sources can provide similar information with different vocabularies, making integration more difficult. This book, Multi-modal Data Fusion based on Embeddings, describes how similar statements about entities can be identified across sources, independent of the vocabulary and data modeling choices. Previous approaches have relied on clean and extensively modeled ontologies for the alignment of statements, but the often noisy data in a web context does not necessarily adhere to these prerequisites. In this book, the use of RDF label information of entities is proposed to tackle this problem. In combination with embeddings, the use of label information allows for a better integration of noisy data, something that has been empirically confirmed by experiment. The book presents two main scientific contributions: the vocabulary and modeling agnostic fusion approach on the purely textual label information, and the combination of three different modalities into one multi-modal embedding space for a more human-like notion of similarity. The book will be of interest to all those faced with the problem of processing data from multiple web-based sources.
일반주제명RDF (Document markup language)
Semantic Web.
언어영어
대출바로가기https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2294660

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00020094 025.042/7 006 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.