가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks /

상세 프로파일

상세정보
자료유형E-Book
개인저자Dawani, Jay, author.
서명/저자사항Hands-on mathematics for deep learning :build a solid mathematical foundation for training efficient deep neural networks /Jay Dawani.
발행사항Birmingham : Packt Publishing, 2020.
형태사항1 online resource
소장본 주기Master record variable field(s) change: 050
ISBN183864184X
9781838641849

일반주기 Table of ContentsLinear AlgebraVector CalculusProbability and StatisticsOptimizationGraph TheoryLinear Neural NetworksFeedforward Neural NetworksRegularizationConvolutional Neural NetworksRecurrent Neural NetworksAttention MechanismsGenerative ModelsTransfer and Meta LearningGeometric Deep Learning.
내용주기Intro -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Essential Mathematics for Deep Learning -- Linear Algebra -- Comparing scalars and vectors -- Linear equations -- Solving linear equations in n-dimensions -- Solving linear equations using elimination -- Matrix operations -- Adding matrices -- Multiplying matrices -- Inverse matrices -- Matrix transpose -- Permutations -- Vector spaces and subspaces -- Spaces -- Subspaces -- Linear maps -- Image and kernel -- Metric space and normed space -- Inner product space
Matrix decompositions -- Determinant -- Eigenvalues and eigenvectors -- Trace -- Orthogonal matrices -- Diagonalization and symmetric matrices -- Singular value decomposition -- Cholesky decomposition -- Summary -- Vector Calculus -- Single variable calculus -- Derivatives -- Sum rule -- Power rule -- Trigonometric functions -- First and second derivatives -- Product rule -- Quotient rule -- Chain rule -- Antiderivative -- Integrals -- The fundamental theorem of calculus -- Substitution rule -- Areas between curves -- Integration by parts -- Multivariable calculus -- Partial derivatives
Chain rule -- Integrals -- Vector calculus -- Derivatives -- Vector fields -- Inverse functions -- Summary -- Probability and Statistics -- Understanding the concepts in probability -- Classical probability -- Sampling with or without replacement -- Multinomial coefficient -- Stirling's formula -- Independence -- Discrete distributions -- Conditional probability -- Random variables -- Variance -- Multiple random variables -- Continuous random variables -- Joint distributions -- More probability distributions -- Normal distribution -- Multivariate normal distribution
Bivariate normal distribution -- Gamma distribution -- Essential concepts in statistics -- Estimation -- Mean squared error -- Sufficiency -- Likelihood -- Confidence intervals -- Bayesian estimation -- Hypothesis testing -- Simple hypotheses -- Composite hypothesis -- The multivariate normal theory -- Linear models -- Hypothesis testing -- Summary -- Optimization -- Understanding optimization and it's different types -- Constrained optimization -- Unconstrained optimization -- Convex optimization -- Convex sets -- Affine sets -- Convex functions -- Optimization problems
Non-convex optimization -- Exploring the various optimization methods -- Least squares -- Lagrange multipliers -- Newton's method -- The secant method -- The quasi-Newton method -- Game theory -- Descent methods -- Gradient descent -- Stochastic gradient descent -- Loss functions -- Gradient descent with momentum -- The Nesterov's accelerated gradient -- Adaptive gradient descent -- Simulated annealing -- Natural evolution -- Exploring population methods -- Genetic algorithms -- Particle swarm optimization -- Summary -- Graph Theory -- Understanding the basic concepts and terminology
요약The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that goes behind building deep learning models.
일반주제명Machine learning -- Mathematics.
언어영어
기타형태 저록Print version:9781838647292
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2500101

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00018711 006.3101515 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.