가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Dark data : why what you don't know matters /

상세 프로파일

상세정보
자료유형E-Book
개인저자Hand, D. J. (David J.), 1950-, author.
서명/저자사항Dark data :why what you don't know matters /David J. Hand.
발행사항Princeton : Princeton University Press, [2020]
발행예정일자2001
형태사항1 online resource
소장본 주기Added to collection customer.56279.3
ISBN0691198853
9780691198859


서지주기Includes bibliographical references and index.
내용주기Cover; Contents; Preface; Part 1: Dark Data: Their Origins and Consequences; Chapter 1: Dark Data: What We Don't See Shapes Our World; The Ghost of Data; So You Think You Have All the Data?; Nothing Happened, So We Ignored It; The Power of Dark Data; All around Us; Chapter 2: Discovering Dark Data: What We Collect and What We Don't; Dark Data on All Sides; Data Exhaust, Selection, and Self-Selection; From the Few to the Many; Experimental Data; Beware Human Frailties; Chapter 3: Definitions and Dark Data: What Do You Want to Know?; Different Definitions and Measuring the Wrong Thing
You Can't Measure EverythingScreening; Selection on the Basis of Past Performance; Chapter 4: Unintentional Dark Data: Saying One Thing, Doing Another; The Big Picture; Summarizing; Human Error; Instrument Limitations; Linking Data Sets; Chapter 5: Strategic Dark Data: Gaming, Feedback, and Information Asymmetry; Gaming; Feedback; Information Asymmetry; Adverse Selection and Algorithms; Chapter 6: Intentional Dark Data: Fraud and Deception; Fraud; Identity Theft and Internet Fraud; Personal Financial Fraud; Financial Market Fraud and Insider Trading; Insurance Fraud; And More
Chapter 7: Science and Dark Data: The Nature of DiscoveryThe Nature of Science; If Only I'd Known That; Tripping over Dark Data; Dark Data and the Big Picture; Hiding the Facts; Retraction; Provenance and Trustworthiness: Who Told You That?; Part II: Illuminating and Using Dark Data; Chapter 8: Dealing with Dark Data: Shining a Light; Hope!; Linking Observed and Missing Data; Identifying the Missing Data Mechanism; Working with the Data We Have; Going Beyond the Data: What If You Die First?; Going Beyond the Data: Imputation; Iteration; Wrong Number!
Chapter 9: Benefiting from Dark Data: Reframing the QuestionHiding Data; Hiding Data from Ourselves: Randomized Controlled Trials; What Might Have Been; Replicated Data; Imaginary Data: The Bayesian Prior; Privacy and Confidentiality Preservation; Collecting Data in the Dark; Chapter 10: Classifying Dark Data: A Route through the Maze; A Taxonomy of Dark Data; Illumination; Notes; Index
요약"Data describe and represent the world. However, no matter how big they may be, data sets don't - indeed cannot - capture everything. Data are measurements - and, as such, they represent only what has been measured. They don't necessarily capture all the information that is relevant to the questions we may want to ask. If we do not take into account what may be missing/unknown in the data we have, we may find ourselves unwittingly asking questions that our data cannot actually address, come to mistaken conclusions, and make disastrous decisions. In this book, David Hand looks at the ubiquitous phenomenon of "missing data." He calls this "dark data" (making a comparison to "dark matter" - i.e., matter in the universe that we know is there, but which is invisible to direct measurement). He reveals how we can detect when data is missing, the types of settings in which missing data are likely to be found, and what to do about it. It can arise for many reasons, which themselves may not be obvious - for example, asymmetric information in wars; time delays in financial trading; dropouts in clinical trials; deliberate selection to enhance apparent performance in hospitals, policing, and schools; etc. What becomes clear is that measuring and collecting more and more data (big data) will not necessarily lead us to better understanding or to better decisions. We need to be vigilant to what is missing or unknown in our data, so that we can try to control for it. How do we do that? We can be alert to the causes of dark data, design better data-collection strategies that sidestep some of these causes - and, we can ask better questions of our data, which will lead us to deeper insights and better decisions"--
일반주제명Missing observations (Statistics)
Big data.
Big data.
Missing observations (Statistics)
COMPUTERS / Database Management / Data Mining
언어영어
기타형태 저록Print version:Hand, D. J. (David J.), 1950-Dark dataPrinceton : Princeton University Press, [2020]9780691182377
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2218633

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00017233 519.5 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.