자료유형 | E-Book |
---|---|
개인저자 | Razzaque, Mohammad Abdur. Karim, Md. Rezaul |
서명/저자사항 | Hands-On Deep Learning for IoT :Train Neural Network Models to Develop Intelligent IoT Applications /Mohammad Abdur Razzaque, Md. Rezaul Karim. |
발행사항 | Birmingham : Packt Publishing, Limited, 2019. |
형태사항 | 1 online resource (298 pages) |
소장본 주기 | Added to collection customer.56279.3 |
ISBN | 1789616069 9781789616064 |
내용주기 | Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier Example -- Indoor localization with Wi-Fi fingerprinting |
요약 | Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networks |
요약 | This book will provide you an overview of Deep Learning techniques to facilitate the analytics and learning in various IoT apps. We will take you through each process - from data collection, analysis, modeling, statistics, and monitoring. We will make IoT data speak with a set of popular frameworks, like TensorFlow, TensorFlow Lite, and Chainer. |
일반주제명 | Internet of things. Internet of things. |
언어 | 영어 |
기타형태 저록 | Print version:Karim, Rezaul.Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications.Birmingham : Packt Publishing, Limited, 짤20199781789616132 |
대출바로가기 | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2179553 |
인쇄
No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 |
---|---|---|---|---|---|---|---|---|
1 | WE00017182 | 005.8 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출가능 |