가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Caffe2 Quick Start Guide : Modular and Scalable Deep Learning Made Easy

상세 프로파일

상세정보
자료유형E-Book
개인저자Nanjappa, Ashwin.
서명/저자사항Caffe2 Quick Start Guide :Modular and Scalable Deep Learning Made Easy.
발행사항Birmingham : Packt Publishing, Limited, 2019.
형태사항1 online resource (127 pages)
소장본 주기Added to collection customer.56279.3
ISBN1789138264
9781789138269
일반주기 Visualization using Netron
내용주기Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introduction and Installation; Introduction to deep learning; AI; ML; Deep learning; Introduction to Caffe2; Caffe2 and PyTorch; Hardware requirements; Software requirements; Building and installing Caffe2; Installing dependencies; Installing acceleration libraries; Building Caffe2; Installing Caffe2; Testing the Caffe2 Python API; Testing the Caffe2 C++ API; Summary; Chapter 2: Composing Networks; Operators; Example -- the MatMul operator; Difference between layers and operators
Example -- a fully connected operatorBuilding a computation graph; Initializing Caffe2; Composing the model network; Sigmoid operator; Softmax operator; Adding input blobs to the workspace; Running the network; Building a multilayer perceptron neural network; MNIST problem; Building a MNIST MLP network; Initializing global constants; Composing network layers; ReLU layer; Set weights of network layers; Running the network; Summary; Chapter 3: Training Networks; Introduction to training; Components of a neural network; Structure of a neural network; Weights of a neural network; Training process
Gradient descent variantsLeNet network; Convolution layer; Pooling layer; Training data; Building LeNet; Layer 1 -- Convolution; Layer 2 -- Max-pooling; Layers 3 and 4 -- Convolution and max-pooling; Layers 5 and 6 -- Fully connected and ReLU; Layer 7 and 8 -- Fully connected and Softmax; Training layers; Loss layer; Optimization layers; Accuracy layer; Summary; Chapter 4: Working with Caffe; The relationship between Caffe and Caffe2; Introduction to AlexNet; Building and installing Caffe; Installing Caffe prerequisites; Building Caffe; Caffe model file formats; Prototxt file; Caffemodel file
Downloading Caffe model filesCaffe2 model file formats; predict_net file; init_net file; Converting a Caffe model to Caffe2; Converting a Caffe2 model to Caffe; Summary; Chapter 5: Working with Other Frameworks; Open Neural Network Exchange; Installing ONNX; ONNX format; ONNX IR; ONNX operators; ONNX in Caffe2; Exporting the Caffe2 model to ONNX; Using the ONNX model in Caffe2; Visualizing the ONNX model; Summary; Chapter 6: Deploying Models to Accelerators for Inference; Inference engines; NVIDIA TensorRT; Installing TensorRT; Using TensorRT
Importing a pre-trained network or creating a networkBuilding an optimized engine from the network; Inference using execution context of an engine; TensorRT API and usage; Intel OpenVINO; Installing OpenVINO; Model conversion; Model inference; Summary; Chapter 7: Caffe2 at the Edge and in the cloud; Caffe2 at the edge on Raspberry Pi; Raspberry Pi; Installing Raspbian; Building Caffe2 on Raspbian; Caffe2 in the cloud using containers; Installing Docker; Installing nvidia-docker; Running Caffe2 containers; Caffe2 model visualization; Visualization using Caffe2 net_drawer
요약Caffe2 by Facebook is a popular and relatively lightweight deep learning framework. Caffe2 is known for speed, accuracy and high efficiency in training neural networks. Caffe2 is widely used in mobile apps. This book is a fast paced guide that will teach you how to train and deploy deep learning models with Caffe2 on resource constrained platforms.
일반주제명Learning.
Learning.
언어영어
기타형태 저록Print version:Nanjappa, Ashwin.Caffe2 Quick Start Guide : Modular and Scalable Deep Learning Made Easy.Birmingham : Packt Publishing, Limited, 짤20199781789137750
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2153715

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00017157 370.1523 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.