가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Training Systems Using Python Statistical Modeling : Explore Popular Techniques for Modeling Your Data in Python [electronic resource]

상세 프로파일

상세정보
자료유형E-Book
개인저자Miller, Curtis.
서명/저자사항Training Systems Using Python Statistical Modeling[electronic resource] :Explore Popular Techniques for Modeling Your Data in Python.
발행사항Birmingham : Packt Publishing, Limited, 2019.
형태사항1 online resource (284 p.)
소장본 주기Master record variable field(s) change: 050, 072, 082, 650
ISBN1838820647
9781838820640
일반주기 Description based upon print version of record.
The silhouette method
내용주기Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Classical Statistical Analysis; Technical requirements; Computing descriptive statistics; Preprocessing the data; Computing basic statistics; Classical inference for proportions; Computing confidence intervals for proportions; Hypothesis testing for proportions; Testing for common proportions; Classical inference for means; Computing confidence intervals for means; Hypothesis testing for means; Testing with two samples; One-way analysis of variance (ANOVA); Diving into Bayesian analysis
How Bayesian analysis worksUsing Bayesian analysis to solve a hit-and-run; Bayesian analysis for proportions; Conjugate priors for proportions; Credible intervals for proportions; Bayesian hypothesis testing for proportions; Comparing two proportions; Bayesian analysis for means; Credible intervals for means; Bayesian hypothesis testing for means; Testing with two samples; Finding correlations; Testing for correlation; Summary; Chapter 2: Introduction to Supervised Learning; Principles of machine learning; Checking the variables using the iris dataset; The goal of supervised learning
Training modelsIssues in training supervised learning models; Splitting data; Cross-validation; Evaluating models; Accuracy; Precision; Recall; F1 score; Classification report; Bayes factor; Summary; Chapter 3: Binary Prediction Models; K-nearest neighbors classifier; Training a kNN classifier; Hyperparameters in kNN classifiers; Decision trees; Fitting the decision tree; Visualizing the tree; Restricting tree depth; Random forests; Optimizing hyperparameters; Naive Bayes classifier; Preprocessing the data; Training the classifier; Support vector machines; Training a SVM; Logistic regression
Fitting a logit modelExtending beyond binary classifiers; Multiple outcomes for decision trees; Multiple outcomes for random forests; Multiple outcomes for Naive Bayes; One-versus-all and one-versus-one classification; Summary; Chapter 4: Regression Analysis and How to Use It; Linear models; Fitting a linear model with OLS; Performing cross-validation; Evaluating linear models; Using AIC to pick models; Bayesian linear models; Choosing a polynomial; Performing Bayesian regression; Ridge regression; Finding the right alpha value; LASSO regression; Spline interpolation
Using SciPy for interpolation2D interpolation; Summary; Chapter 5: Neural Networks; An introduction to perceptrons; Neural networks; The structure of a neural network; Types of neural networks; The MLP model; MLPs for classification; Optimization techniques; Training the network; Fitting an MLP to the iris dataset; Fitting an MLP to the digits dataset; MLP for regression; Summary; Chapter 6: Clustering Techniques; Introduction to clustering; Computing distances; Exploring the k-means algorithm; Clustering the iris dataset; Compressing images with k-means; Evaluating clusters; The elbow method
요약This book will acquaint you with various aspects of statistical analysis in Python. You will work with different types of prediction models, such as decision trees, random forests and neural networks. By the end of this book, you will be confident in using various Python packages to train your own models for effective machine learning.
일반주제명COMPUTERS -- Programming Languages -- Python.
Python (Computer program language)
Graphical modeling (Statistics)
언어영어
기타형태 저록Print version:Miller, CurtisTraining Systems Using Python Statistical Modeling : Explore Popular Techniques for Modeling Your Data in PythonBirmingham : Packt Publishing, Limited,c20199781838823733
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2142584

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00017134 005.133 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.