자료유형 | E-Book |
---|---|
개인저자 | Liu, Yuxi (Hayden) Maldonado, Pablo. |
서명/저자사항 | R Deep Learning Projects :Master the techniques to design and develop neural network models in R. |
발행사항 | Birmingham : Packt Publishing, 2018. |
형태사항 | 1 online resource (253 pages) |
소장본 주기 | Added to collection customer.56279.3 - Master record variable field(s) change: 072 |
ISBN | 9781788474559 1788474554 1788478401 9781788478403 |
EAN | 9781788478403 |
일반주기 |
Exploratory data analysis.
|
내용주기 | Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Handwritten Digit Recognition Using Convolutional Neural Networks; What is deep learning and why do we need it?; What makes deep learning special?; What are the applications of deep learning?; Handwritten digit recognition using CNNs; Get started with exploring MNIST; First attempt a?#x80;#x93; logistic regression; Going from logistic regression to single-layer neural networks; Adding more hidden layers to the networks; Extracting richer representation with CNNs; Summary. Chapter 2: Traffic Sign Recognition for Intelligent VehiclesHow is deep learning applied in self-driving cars?; How does deep learning become a state-of-the-art solution?; Traffic sign recognition using CNN; Getting started with exploring GTSRB; First solutionA? a?#x80;#x93; convolutional neural networks using MXNet; Trying something newA? a?#x80;#x93; CNNs using Keras with TensorFlow; Reducing overfitting with dropout; Dealing with a small training setA? a?#x80;#x93; data augmentation; Reviewing methods to prevent overfitting in CNNs; Summary; Chapter 3: Fraud Detection with Autoencoders; Getting ready. Installing Keras and TensorFlow for RInstalling H2O; Our first examples; A simple 2D example; Autoencoders and MNIST; Outlier detection in MNIST; Credit card fraud detection with autoencoders; Exploratory data analysis; The autoencoder approach a?#x80;#x93; Keras; Fraud detection with H2O; Exercises; Variational Autoencoders; Image reconstruction using VAEs; Outlier detection in MNIST; Text fraud detection; From unstructured text data to a matrix; From text to matrix representation a?#x80;#x94; the Enron dataset; Autoencoder on the matrix representation; Exercises; Summary. Chapter 4: Text Generation Using Recurrent Neural NetworksWhat is so exciting about recurrent neural networks?; But what is a recurrent neural network, really?; LSTM and GRU networks; LSTM; GRU; RNNs from scratch in R; Classes in R with R6; Perceptron as an R6 class; Logistic regression; Multi-layer perceptron; Implementing a RNN; Implementation as an R6 class; Implementation without R6; RNN without derivatives a?#x80;#x94; the cross-entropy method; RNN using Keras; A simple benchmark implementation; Generating new text from old; Exercises; Summary; Chapter 5: Sentiment Analysis with Word Embeddings. Warm-up a?#x80;#x93; data explorationWorking with tidy text; The more, the merrier a?#x80;#x93; calculating n-grams instead of single words; Bag of words benchmark; Preparing the data; Implementing a benchmark a?#x80;#x93; logistic regressionA? ; Exercises; Word embeddings; word2vec; GloVe; Sentiment analysis from movie reviews; Data preprocessing; From words to vectors; Sentiment extraction; The importance of data cleansing; Vector embeddings and neural networks; Bi-directional LSTM networks; Other LSTM architectures; Exercises; Mining sentiment from Twitter; Connecting to the Twitter API; Building our model. |
요약 | R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text ... |
일반주제명 | R. Artificial intelligence. Neural networks. Artificial intelligence. MATHEMATICS / Applied MATHEMATICS / Probability & Statistics / General |
언어 | 영어 |
기타형태 저록 | Print version:Liu, Yuxi (Hayden).R Deep Learning Projects : Master the techniques to design and develop neural network models in R.Birmingham : Packt Publishing, 짤2018 |
대출바로가기 | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1717558 |
인쇄
No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 |
---|---|---|---|---|---|---|---|---|
1 | WE00014163 | 519.502855133 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출가능 |