가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition

상세 프로파일

상세정보
자료유형E-Book
개인저자Zaccone, Giancarlo.
Karim, Md. Rezaul.
서명/저자사항Deep Learning with TensorFlow :Explore neural networks and build intelligent systems with Python, 2nd Edition.
판사항2nd ed.
발행사항Birmingham : Packt Publishing, 2018.
형태사항1 online resource (483 pages)
소장본 주기Master record variable field(s) change: 072 - Master record variable field(s) change: 072, 082 - OCLC control number change
ISBN9781788831833
1788831837


EAN9781788831109
일반주기 How does an autoencoder work?
내용주기Cover; Copyright; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; A soft introduction to machine learning; Supervised learning; Unbalanced data; Unsupervised learning; Reinforcement learning; What is deep learning?; Artificial neural networks; The biological neurons; The artificial neuron; How does an ANN learn?; ANNs and the backpropagation algorithm; Weight optimization; Stochastic gradient descent; Neural network architectures; Deep Neural Networks (DNNs); Multilayer perceptron; Deep Belief Networks (DBNs).
Convolutional Neural Networks (CNNs)AutoEncoders; Recurrent Neural Networks (RNNs); Emergent architectures; Deep learning frameworks; Summary; Chapter 2: A First Look at TensorFlow; A general overview of TensorFlow; What's new in TensorFlow v1.6?; Nvidia GPU support optimized; Introducing TensorFlow Lite; Eager execution; Optimized Accelerated Linear Algebra (XLA); Installing and configuring TensorFlow; TensorFlow computational graph; TensorFlow code structure; Eager execution with TensorFlow; Data model in TensorFlow; Tensor; Rank and shape; Data type; Variables; Fetches.
Feeds and placeholdersVisualizing computations through TensorBoard; How does TensorBoard work?; Linear regression and beyond; Linear regression revisited for a real dataset; Summary; Chapter 3: Feed-Forward Neural Networks with TensorFlow; Feed-forward neural networks (FFNNs); Feed-forward and backpropagation; Weights and biases; Activation functions; Using sigmoid; Using tanh; Using ReLU; Using softmax; Implementing a feed-forward neural network; Exploring the MNIST dataset; Softmax classifier; Implementing a multilayer perceptron (MLP); Training an MLP; Using MLPs; Dataset description.
PreprocessingA TensorFlow implementation of MLP for client-subscription assessment; Deep Belief Networks (DBNs); Restricted Boltzmann Machines (RBMs); Construction of a simple DBN; Unsupervised pre-training; Supervised fine-tuning; Implementing a DBN with TensorFlow for client-subscription assessment; Tuning hyperparameters and advanced FFNNs; Tuning FFNN hyperparameters; Number of hidden layers; Number of neurons per hidden layer; Weight and biases initialization; Selecting the most suitable optimizer; GridSearch and randomized search for hyperparameters tuning; Regularization.
Dropout optimizationSummary; Chapter 4: Convolutional Neural Networks; Main concepts of CNNs; CNNs in action; LeNet5; Implementing a LeNet-5 step by step; AlexNet; Transfer learning; Pretrained AlexNet; Dataset preparation; Fine-tuning implementation; VGG; Artistic style learning with VGG-19; Input images; Content extractor and loss; Style extractor and loss; Merger and total loss; Training; Inception-v3; Exploring Inception with TensorFlow; Emotion recognition with CNNs; Testing the model on your own image; Source code; Summary; Chapter 5: Optimizing TensorFlow Autoencoders.
요약Compliant with TensorFlow 1.7, this book introduces the core concepts of deep learning. Get implementation and research details on cutting-edge architectures and apply advanced concepts to your own projects. Develop your knowledge of deep neural networks through hands-on model building and examples of real-world data collection.
일반주제명Machine learning.
Artificial intelligence.
Python (Computer program language)
Artificial intelligence.
Machine learning.
Python (Computer program language)
COMPUTERS / General.
언어영어
기타형태 저록Print version:Zaccone, Giancarlo.Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition.Birmingham : Packt Publishing, 짤2018
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1789473

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00013184 006.31 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.