가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Hands-on exploratory data analysis with Python : perform EDA techniques to understand, summarize, and investigate your data /

상세 프로파일

상세정보
자료유형E-Book
개인저자Mukhiya, Suresh Kumar, author.
Ahmed, Usman, author.
서명/저자사항Hands-on exploratory data analysis with Python :perform EDA techniques to understand, summarize, and investigate your data /Suresh Kumar Mukhiya, Usman Ahmed.
발행사항Birmingham, UK : Packt Publishing, 2020.
형태사항1 online resource (1 volume) : illustrations
소장본 주기Added to collection customer.56279.3
ISBN178953562X
9781789535624

서지주기Includes bibliographical references.
내용주기Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: The Fundamentals of EDA -- Chapter 01: Exploratory Data Analysis Fundamentals -- Understanding data science -- The significance of EDA -- Steps in EDA -- Making sense of data -- Numerical data -- Discrete data -- Continuous data -- Categorical data -- Measurement scales -- Nominal -- Ordinal -- Interval -- Ratio -- Comparing EDA with classical and Bayesian analysis -- Software tools available for EDA -- Getting started with EDA -- NumPy -- Pandas -- SciPy -- Matplotlib
Applying descriptive statistics -- Data refactoring -- Dropping columns -- Refactoring timezones -- Data analysis -- Number of emails -- Time of day -- Average emails per day and hour -- Number of emails per day -- Most frequently used words -- Summary -- Further reading -- Chapter 04: Data Transformation -- Technical requirements -- Background -- Merging database-style dataframes -- Concatenating along with an axis -- Using df.merge with an inner join -- Using the pd.merge() method with a left join -- Using the pd.merge() method with a right join -- Using pd.merge() methods with outer join
Merging on index -- Reshaping and pivoting -- Transformation techniques -- Performing data deduplication -- Replacing values -- Handling missing data -- NaN values in pandas objects -- Dropping missing values -- Dropping by rows -- Dropping by columns -- Mathematical operations with NaN -- Filling missing values -- Backward and forward filling -- Interpolating missing values -- Renaming axis indexes -- Discretization and binning -- Outlier detection and filtering -- Permutation and random sampling -- Random sampling without replacement -- Random sampling with replacement
Computing indicators/dummy variables -- String manipulation -- Benefits of data transformation -- Challenges -- Summary -- Further reading -- Section 2: Descriptive Statistics -- Chapter 05: Descriptive Statistics -- Technical requirements -- Understanding statistics -- Distribution function -- Uniform distribution -- Normal distribution -- Exponential distribution -- Binomial distribution -- Cumulative distribution function -- Descriptive statistics -- Measures of central tendency -- Mean/average -- Median -- Mode -- Measures of dispersion -- Standard deviation -- Variance -- Skewness
요약Further reading -- Chapter 02: Visual Aids for EDA -- Technical requirements -- Line chart -- Steps involved -- Bar charts -- Scatter plot -- Bubble chart -- Scatter plot using seaborn -- Area plot and stacked plot -- Pie chart -- Table chart -- Polar chart -- Histogram -- Lollipop chart -- Choosing the best chart -- Other libraries to explore -- Summary -- Further reading -- Chapter 03: EDA with Personal Email -- Technical requirements -- Loading the dataset -- Data transformation -- Data cleansing -- Loading the CSV file -- Converting the date -- Removing NaN values
요약This book provides practical knowledge about the main pillars of EDA including data cleaning, data preparation, data exploration, and data visualization. You can leverage the power of Python to understand, summarize and investigate your data in the best way possible. The book presents a unique approach to exploring hidden features in your data.
일반주제명Python (Computer program language)
Data mining.
Electronic data processing -- Distributed processing.
Information visualization.
Data mining
Electronic data processing -- Distributed processing
Information visualization
Python (Computer program language)
언어영어
기타형태 저록Print version:Mukhiya, Suresh Kumar.Hands-On Exploratory Data Analysis with Python : Perform EDA Techniques to Understand, Summarize, and Investigate Your Data.Birmingham : Packt Publishing, Limited, 짤2020
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2411474

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00018577 001.420285 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.